RESISTOR FLANGE MOUNT 800 WATT

DATA SHEET PART SERIES: 31A1099XXF

SHEET 1 OF 2 Dwg 31A1099F EN 13-3528 Revision-

FEATURES APPLICATIONS

Tab Launch Broadcast

High Power Filters
Integrated Heat Sink
High Power Amplifiers

Low Capacitance Isolators
Easy Installation Military

Wide Resistance Range Instrumentation

GENERAL DESCRIPTION

EMC Technology offers the widest selection of flange mount resistors worldwide. High power flange components offer excellent performance and the convenience of bolt on installation.

ORDERING INFORMATION Part Identifier:

31A1099XXF

Tolerance
Resistance Value

SPECIFICATIONS

1.0 ELECTRICAL

Resistance Range: 7 - 175 OHMS

Resistance Tolerance: ±5% standard 1% and 2% available

Typical Capacitance: 2.0 pF

Input Power CW: 800 watts @ 100°C heat sink, derated linearly to zero power at 150°C

Peak Power: 8000 watts (based on 10us pulse width and 1% duty cycle)

2.0 ENVIRONMENTAL

Operating Temperature: -55°C to +150°C

Non-operating Temperature: -65°C to +150°C

Temperature Coefficient: +/-200 PPM / °C max

3.0 MARKING

Unit Marking: Logo and Part Number; legibility and permanency per MIL-STD-130

4.0 QUALITY ASSURANCE

Visual and Mechanical Inspection: Per 824W107

DC Resistance Check: 100% DC Resistance Check

Data Retention: Standard

5.0 PACKAGING

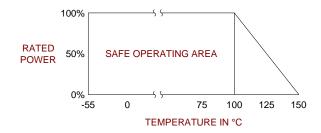
Standard Packaging: Tray

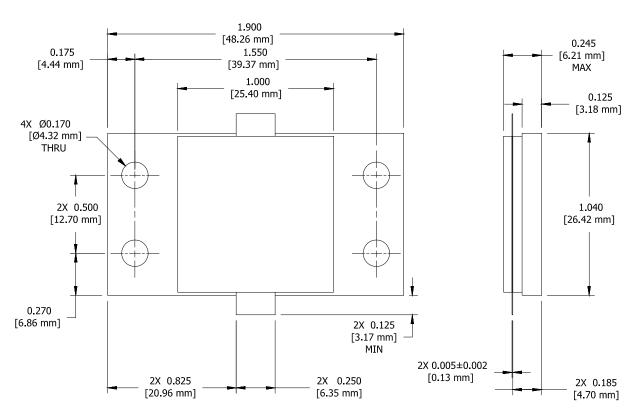
Smiths microwave Cage Codes: 24602 / 2Y194 www.emc-rflabs.com • +1 772-286-9300

RESISTOR FLANGE MOUNT 800 WATT

DATA SHEET PART SERIES: 31A1099XXF

SHEET 2 OF 2 Dwg 31A1099F EN 13-3528 Revision-


6.0 MECHANICAL


Substrate Material: Beryllium Oxide

Resistive Film: Thin Film
Cover Material: Alumina

Tab Material:Beryllium CopperTab Finish:Silver platedFlange Material:CopperFlange Finish:Nickel

Metric Dimensions: Provided for reference only

Unless Otherwise Specified: TOLERANCE: $X.XX = \pm 0.02$ $X.XXX = \pm 0.010$